

Community Involvement Meeting April 7, 2021

Agenda:

Stormwater Management

Project Background

Project Overview & Status

Potential Flood Mitigation Solutions

Request for Feedback

Stormwater Management Overview

What is Stormwater runoff?

- Water from rain and tides that flows over driveways, lawns, sidewalks and streets.
- Picks up debris, chemicals, fertilizers, auto fluids, and other pollutants before entering the stormwater collection system
- Residents may experience flooding due to heavy rainfall and seasonal high tides
- King Tides: higher than normal (September -November)
- Heavy rainfall + high tides can overwhelm stormwater infrastructure and prevent proper drainage

Stormwater Management System Overview

- Municipal Separate Storm Sewer System (MS4)
 - Carries runoff through system of pipes and structures before depositing into Biscayne Bay & surrounding waterways
- Water Quality
 - o Improving health of our waterways by reducing pollutants in stormwater runoff

Project Background

Project Area

Existing Challenges

Because most of the City is only a few feet above sea level and a few feet above the groundwater table, we face increasing challenges to **drain water** and avoid flooding in our communities

Flooding

Project Overview

Overall Project Goal: Planning Level Study

Study the flooding issues and existing stormwater system in the Sunrise Harbor Area to evaluate potential flood mitigation solutions through data analysis and stormwater modeling simulations

• Evaluate cost-effective stormwater infrastructure control solutions

Timeline

	Month																						
	October 2020		November 2020		De	December 2020		January 2021		February 2021		March 2021		April 2021		May 2021		Future					
Data Collection																							
Stormwater Modeling																							
Alternatives Development																							
Stakeholder Coordination																							
Basis of Design Recommendation																							
Future Design & Implementation																							

Field Verification & Assessments

- Multiple Site Visits to confirm:
 - Pipe sizes, materials and elevations
 - Connectivity of System
 - Presence of buried/hidden assets
 - o Condition of pipes (debris)

NG GROUP, P.A

Surveying & Geotechnical Studies

Stormwater Management System Overview

Stormwater Modeling: Key Assumptions and Scenarios Evaluated

- $_{\odot}\,$ The purpose of the stormwater modeling is to:
 - Create an existing conditions stormwater management model
 - Use the stormwater model to determine peak flood elevations
 - Use the stormwater model for identification of areas of concern and prioritization of flood mitigation in those areas
 - Modify the stormwater model to conduct flood mitigation scenario evaluations
- We evaluated the following scenarios
 - \circ King Tides
 - o 5-year, 24-hour Design Storm
 - o 100-year, 72 hour Design Storm
 - \circ Sea Level Rise

Stormwater Modeling – Digital Elevation Model

Stormwater Modeling – Existing Conditions: **5 Year** Design Storm

Stormwater Modeling – Existing Conditions: 100 Year Design Storm

Potential Flood Mitigation Solutions

Potential Solutions: Flood Mitigation, Water Quality Treatment, Aquifer Recharge

Capturing Runoff at Higher Elevations (reduce downstream impacts)

Outfall Improvements

Drainage Wells

Regrading Roadways (Improve Conveyance)

Improving System Connectivity

Green Stormwater Infrastructure

Capturing Runoff at Higher Elevations (reduce downstream impacts)

Exfiltration Trench:

Collect, Store, Treat and Infiltrate within the City ROW (lowest cost, modular)

Drainage Wells

Drainage Wells:

recharge groundwater and help to maintain or restore the site's natural hydrology

★ Potential Locations for new Drainage Wells

Improving System Connectivity

Improve Connectivity: Install new pipes at specific locations

- Outfall Protection
- o Larger Outfalls
- Water Quality Pre-treatment

Green Stormwater Infrastructure (GSI) - Benefits

- GSI can reduce pollutants that threaten the Bay, such as metals, nutrients, sediment, and pathogens
- By retaining rainfall, GSI reduces
 stormwater discharges and pollutant
 loads
- GSI can also reduce runoff volume and peak discharge

Graphic Courtesy of City of Miami Beach

Where can the City implement Green Infrastructure?

- Sunrise Harbor Park
- Triangular Open Spaces
- o Parking areas
- Roads/Intersections
- Integrated with other stormwater infrastructure improvements

28

What does this mean for the Sunrise Harbor Community?

- Fewer flood disturbancesMore desirable area
- Improved water quality of the Bay
 Improved motorist and pedestrian safety

Request for Feedback

Request for Feedback

Participatory Approach to decision-making: Key to successful flood-resilient Sunrise Harbor Community

Community collaboration is essential to assist the City in identifying benefits and limitations of planned improvements

Please submit your feedback by April 23rd, 2021

E-mail: sunriseharbordrainage@coralgables.com

Web: https://www.coralgables.com/sunriseharbor

Thank you

Questions/Discussion

